Решение задачи 4 (III уровень)

При решении задачи будем считать, что пол неподвижен относительно Земли, и связанную с ней лабораторную систему отсчета можно считать инерциальной. Тогда, учитывая отсутствие сил трения, на основании закона сохранения импульса можно утверждать, что скорость \vec{v}_0 лягушонка относительно доски в момент его отрыва от доски должна удовлетворять соотношению: $(v_0\cos\alpha-u)m=uM$, где v_0 — модуль указанной скорости, α — угол между вектором скорости \vec{v}_0 и доской, а u — модуль скорости доски относительно пола после прыжка лягушонка.

Поскольку после отрыва от доски лягушонок совершает свободное падение, т.е. движется с ускорением свободного падения \vec{g} , время его полета $\tau = 2v_0 \sin \alpha/g$. В момент касания лягушонком доски он должен попасть на ее край, т.е. должно быть справедливо соотношение: $(v_0 \cos \alpha - u)\tau = L - u\tau$. Из двух последних соотношений следует, что $v_0 = \sqrt{gL/\sin 2\alpha}$. По условию задачи скорость лягушонка должна быть минимальной. Следовательно, угол α должен быть равен 45°. Учитывая, что искомый угол α удовлетворяет соотношению: $\operatorname{tg}\alpha = \frac{v_0 \sin \alpha}{v_0 \cos \alpha - u}$, из полученных выше соотношений получаем $\operatorname{tg}\alpha = (1 + \frac{m}{M})\operatorname{tg}\alpha$. Таким образом, при выполнении сделанных предположений искомый угол равен $\alpha = \arctan(1 + \frac{m}{M})$.